

Computer Programming

DRAGOS AROTARITEI

dragos.arotaritei@umfiasi.ro

University of Medicine and Pharmacy “Grigore T. Popa” Iasi

Department of Medical Bioengineering

Romania

May 2016

Introduction

 History - before1950’s

 What was the first computer programming language?

 Officially, the first programming language for a computer was Plankalkül -

developed by Konrad Zuse for the Z3 (first working computer based on

Turing complete machine, constructed in 1941) between 1943 and 1945.

However, it was not implemented until 1998.

 First high-level programming language, Short Code, which was proposed by

John Mauchly in 1949. It was designed to represent mathematical expressions

in a format readable by human beings.

 However, because it had to be translated into machine code before it could be

executed, it had relatively slow processing speeds.

 Other early programming languages were developed in the 1950s and 1960s,

including Autocode, COBOL, FLOW-MATIC, and LISP. Of these, only

COBOL and LISP are still in use today.

 1972 C language, Dennis Ritchie (How was made the first C compiler,

written in C?)

 1983, C++ , Bjarne Stroustrup C with Classes

 How many programming languages exists in the world? More than 500 but

probably in reality the number of programming languages goes to over 2750!

 A criteria classification – imperative and declarative

 An imperative program consists of explicit commands for the computer to

perform. (e.g. Visual Basic, Java, Visual C++.net, Visual C#)

 A declarative programming, focuses on what the program should accomplish

without specifying how the program should achieve the result (relational or

functional language), e.g. HTML, MXML, XAML, XSLT, LISP

 Other classifications exists, e.g. procedural, event-driven, object-oriented,

declarative, scripts, Page Description Language, and Functional)

Genealogy of computer language

Why Computer Languages?

 Understanding computer languages can help us to choose one that is the most

appropriate one for a specific task.

 C, C++, C# or C++/CLIa for systems programming or desktop applications?

 Fortran, C or Phyton for scientific computations?

 PHP or Ruby for a web-based application?

 Visual Basic, Visual C++ or Java for a graphical user interface?

 C, Basic or Assembly Languages for embedded systems?

 VBScript for EXCEL?

 What language we can choose for grid programming (parallel programming)?

 What could be a good option for mobile programming?

 Most languages are better for some things meanwhile others are most suitable

for other types of applications.
a C++/CLI (C++ modified for Common Language Infrastructure) is a language specification created by Microsoft and intended to supersede

Managed Extensions for C++.

Compilers and Interpreters

 The compilation (and linking for some languages) and execution of a

program in high level language

 The compiler translate a high level source code written in a programming

language into a into an equivalent target program (typically in machine

language) - .exe, .com, etc. The application can run independently.

 In interpreter execute line by line one application. The interpreter needs a a

virtual machine behind them (or an interpreter environment) in order to

execute instructions.

 Several scripting languages (e.g. Perl, Tcl, Python, and Ruby) can write new

pieces of itself and execute them on the fly.

Basic C compiler C++ Compiler

 Compiler Design – distinct course in Computer Science and Computer

Engineering.

 Bytecode (JVM - Java Virtual Machine, modern Java compilers) and P-Code

(Pascal)

 P-code (Portable Code Machine), a virtual machine designed to execute p-

code (the assembly language of a hypothetical CPU).

 Programming Environments – Compilers and interpreters do not exist as

isolated entities. Other tools assist the programmers (Assemblers, debuggers,

preprocessors, linkers) and IDE (Interface Developing Environment)

 Open source IDE (Eclipse and NetBeans) and proprietary IDE for compilers

(Visual Studio, IAR Embedded Workbench, IAR visualSTATE – event driven

state machine)

 However, compiler can be used along with a collection of command-line tools

but it is a very hard task.

Programming Language Syntax

 Different from natural languages, the programming language must be precise.

 Both their form (syntax) and meaning (semantics) must be specified without

ambiguity

 Specifying Syntax: Regular Expressions and Context-Free Grammars

 The structured program theorem (Böhm-Jacopini theorem, 1966) - class of

control flow graphs (historically called charts) can compute any computable

function if it combines subprograms in only three specific ways (control

structures).

 Sequence: Do this; then do that

 Selection (or choice): IF such-&-such is true,

 THEN do this

 ELSE do that

 Repetition (or looping): WHILE such-&-such is true

 DO this

 Other structures have been added for facility and clarity of programs (e.g. switch in C)

Application of programming languages called by

other Applicantions

 Calling C++\C functions from Matlab (Fortran functions are also possible)

 Be created with Matlab editor. Compilers suported by Matlab, but Matlab has

also a C/C++ compiler.

 The C/C++ Matrix Library API and the C MEX Library API functions.

 The mex build script. The result of compile will be a .dll file called from .m

file.

 Functions/subroutine must have a specific template

 Input/outputs are passed via interface

 A snippet code must verify if the number of input variable is correct

 #include "mex.h“ at start of arrayProduct.c file

 nrhs, number of inputs

 nlhs, number of outputs

 Code can be magnitude order faster

 Encapsulation of proprietary algorithm in called function

 CAE (Computer-aided engineering) and Multiphysics tools (Comsol

Multiphysics) can use files written in different programming language and

interpret them (FEM, finite element method).

 ABAQUS/CAE, use Phyton for scripting and Fortran for subroutines. UEL

and UMAT subroutines. UMAT: Define a material’s mechanical behavior,

UEL: Define an element. *AMPLITUDE is used for tabular loading1

1R.Filep, D. Arotaritei, M. Turnea, M. Ilea, M. Rotariu, Crack Development in Prosthetic Skin using Caginalp Phase

Field Model, Medical-Surgical Journal, Iasi, Romania, October 2016, paper accepted.

Object Oriented Programming

 Object oriented programming (OOP) is programing based on objects.

 E.g. C++, Java, Lisp, Pyton, Smaltalk, C#, Perl, Ruby, and PHP.

 Classes - data and procedures (methods) for a given type or class of object

 Objects - instances of classes

 Main Features

 Inheritance - an object or class is based on another object (prototypal inheritance)

or class (class-based inheritance), using the same implementation (single,

multiple, multilevel); inheritance enables new objects to take on the properties of

existing objects

 Polymorphism - single interface to entities of different types

 Encapsulation - Encapsulation can be used to hide data members and members

function (public, private, protected)

 Abstraction - Abstraction means working with something we know how to use

without knowing how it works internally. It allows us to write code, which works

with abstract data structures (like dictionaries, lists, arrays and others).

Grid Computing

 Grid computing is a distributed architecture of large numbers of computers or

clusters of computers connected to solve a complex problem.

The GRAI network2 Node structure2

Grid Computing - Programming

 C and C++ with MPI (Message Passing Interface), STL – Standard Template

library
- A good example is presented in a)

- Parallelization of algorithm

- Job allocation

- Collect and assembly the results

- Compile the program

- Submit the jobs to the queue

- Load balancing problem

- Time optimization

a) https://hpcc.usc.edu/support/documentation/examples-of-mpi-programs

The GUI for epidimiological service

developed in JAVA

The scripts for

BioGridEpidemiologyService-

partial

Cloud Computing?

 Service models

 Infrastructure as a service (IaaS)

 Platform as a service (PaaS)

 Software as a service (SaaS)

 Free platform: Hadoop, Eucalyptus

 Programming languages: Java, Pyton, Ruby, ECL, etc.

 Applications, e.g. “Hybrid classification engine for cardiac arrhythmia cloud

 service in elderly healthcare management”3, health care mangement system

named CardiaGuard, a cloud service that is an expert system based on hybrid

classifier using support vector machine (SVM) and random tree (RT)

classification algorithm.

 Preprocess data (filters), HRV (Heart Rate Variability), RR intervals are

extracted.

Mobile Programming

 Mobile application development - application software developed for

handheld devices, e.g. digital assistants (PDA), enterprise digital assistants

(EDA) or mobile phones.

 Operating systems: Android, IOS, Windows 10, Ubuntu, Tizen OS.

 The main programming language for Android is Java.

 Eclipse or Android Studio? (XAMARIN – cross platform, C# language)

 Android Emulator

 Javascript+jQuery (client-side scripting of HTML)

 Mobile database – security of SQL transaction.

 Java, JAVA IDE, Swing

Programming languages for embedded systems

 C (variants) with some extensions. Pointers are recommended to be 2 level

maximum (pointer to pointer, or pointer to array of pointers)

 Different from ANSI C, byte and boolean type for some implentations.

 Custom C for Development Board, e.g. (EasyPic v7, Mikro Ccompiler)

 Biomedical applications, MSP430xxx, Code Composer Studio, wireless

applications

 Limited options: C, C++, Java, Basic.

 Communication protocol is transparent in most cases for wireless applications

Conclusions

 Assembly languages have actually a small usage. The main applications are

that need high speed: drivers (e.g. printers), libraries (A/D conversion).

 C Language is wide spread and despite of numerous challenges it is still very

used language

 Some languages that start with great expectation proved to be the a niche one

(Prolog, Haskell).

 Writing solid code with comments and test of validity of parameters is good

practice

 Using try and catch in release version can help you in future versions of your

programs

 Some programming languages and associated methods can have their own

philosophy (a thinking mode), e.g. C language and Visual C++ with MFC

 There are other types of languages that are not discussed there: languages for

artificial intelligence, functional programming languages, programming in

hypercube multiprocessors, etc.

 Microprocessors and Computers have influence on developing or success of

some programming languages (or new programming languages, e.g.

transputers and Occam).

 Operating system is important in choose of programming language for your

application.

 Computer Programming theory (and Compiler Design) can be an accelerator

to learn a programming language?

 It is hard to cover all the domains from computer languages. Other topics are

not discussed, e.g. Programming Wireless Sensor Networks4.

References

 Robert W. Sebesta, Concepts of Programming Languages (11th Edition), Pearson, 2015.

 Michael L. Scott, Programming Language Pragmatics, Fourth Edition, Morgan Kaufmann, 2009.

 Maurizio Gabbrielli and Simone Martini, Programming Languages: Principles and Paradigms, Springer, 2010.

 Donald E. Knuth, The Art of Computer Programming, Vol I-IV, Addison-Wesley Professional, 2011

 Blaise Barney, Introduction to Parallel Computing, Lawrence Livermore National Laboratory.

 Michael Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill Science/Engineering/Math,

2003.

 De Joshy Joseph,Craig Fellenstein, Grid Computing, Prentice Hall, 2004.

 Borko Furht, Armando Escalante, Handbook of Cloud Computing, Springer, 2010


2Craus, M. Teodorescu, H.N., Croitoru, C., Brudaru, O., Arotaritei, D., Calin, M., Archip, A. "Academic Grid

for Complex Applications – GRAI" , CSCS16, 16th International Conference on Control Systems and

Computer Science, mai 22-25, 2007, POLITEHNICA University of Bucharest.


3Huan Chena, Bo-Chao Cheng, Guo-Tan Liao Ting-Chun Kuo, Hybrid classification engine for cardiac

arrhythmia cloud service in elderly healthcare management, Journal of Visual Languages & Computing,

Volume 25, Issue 6, December 2014, Pages 745–753.

 Luca Mottola, Gian Pietro Picco, Programming Wireless Sensor Networks: Fundamental Concepts and State of

the Art (https://core.ac.uk/download/files/362/11435222.pdf)

https://core.ac.uk/download/files/362/11435222.pdf
https://core.ac.uk/download/files/362/11435222.pdf

